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Characteristic Modes for Aperture Problems
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Abstract —A theory of characteristic modes is developed for problems
consisting of two regions coupled by an aperture. The modes are derived
from a weighted eigenvalue equation whose eigenfunctions define a set of
real expansion functions for the equivalent magnetic current over the
aperture region and whose eigenvalues are the modal aperture admittances.
A modal solution is obtained for an aperture of arbitrary size and shape
coupling two regions of arbitrary size and shape. The theory provides a
rigorous basis for the augmentation of the Bethe-hole theory by radiation
conductance terms, for its extension to apertures of larger electrical size,
and for its extension to apertures in nonplanar conducting surfaces.

1. INTRODUCTION

HE THEORY OF characteristic modes has proved
very useful in the analysis of electromagnetic scatter-
ing problems [1]-[4]. These modes are basically solutions
to a weighted eigenvalue equation involving the impedance
operator Z, which relates the surface current on a conduc-
tor to the tangential component of the incident electric
field on the conductor. The modal currents are real (or
equiphasal), orthogonal over the conducting surface with
weight operator Re Z, and the modal radiation fields are
Hermitian orthogonal over the radiation sphere. When
used in a modal solution, they give a radiation field which
converges in a least-squares sense on the radiation sphere.
A similar theory of characteristic modes can be devel-
oped for the equivalent magnetic current in an aperture
problem. As shown in [5], the problem of coupling from
one region to another region through an aperture can be
formulated in terms of two generalized aperture admit-
tance operators, one for each region. These aperture admit-
tance operators are complex and symmetric, just as was the
impedance operator in a scattering problem. Hence, char-
acteristic modes can be defined for aperture problems in a
manner dual to those defined for scattering problems.
These modes have the same desirable properties as the
modes in a scattering problem, as follows: a) The char-
acteristic magnetic currents are real (or equiphasal).
b) They are weighted orthogonal over the aperture region.
¢) Their radiation fields (characteristic fields) are Hermi-
tian orthogonal over the radiation sphere. d) Modal solu-
tions for the radiation field converge in a least-squares
sense on the radiation sphere.
Aperture problems have been considered by many previ-
ous investigators. For an extensive bibliography, see [6].
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Small apertures in an infinite conducting plane are usually
treated by the Bethe-hole theory [7]. If the small aperture is
in a nonplanar surface, the Bethe-hole theory is usually
used as an approximation. When the aperture is larger in
terms of wavelengths, solution of the appropriate integral
equation is usually attempted. The modal solution devel-
oped in this paper provides a general approach to the
problem, valid for apertures of arbitrary size and shape in
conductors of arbitrary size and shape. It reduces to the
Bethe-hole theory for small apertures in a conducting
plane, and shows how the Bethe-hole theory should be
modified for larger apertures and nonplanar surfaces.

II. FORMULATION OF THE PROBLEM

The problem to be considered is the same as that dis-
cussed in [5] and illustrated by Fig. 1. It consists of two
regions bounded by perfect electric conductors (called con-
ductors for short) and coupled by an aperture. One region,
called region a, is considered to be closed, i.e., of bounded
extent, and contains impressed sources J', M'. The other
region, called region b, is considered to be open, i.e., of
unbounded extent opened at infinity. The medium in each
region is assumed to be loss free, so that the only power
loss is due to radiation. We shall develop the theory for the
particular case shown in Fig. 1, i.e., region « is closed and
region b is open. Slight changes in the interpretation of the
theory are required if both regions are open, or if both
regions are closed, or if impressed sources exist in both
regions.

The equivalence principle [8, sec. 3-5] is used to divide
the original problem into two decoupled parts, as shown in
Fig. 2. This is accomplished by closing the aperture with a
perfect electric conductor (short circuiting the aperture)
and placing sheets of magnetic current over the aperture
region on both sides of the conductor. In region a, the field
is produced by the original sources J’, M* plus the equiv-
alent magnetic current sheet

M=nXE

(1)

over the short-circuited aperture region. In (1), n is the
unit normal pointing into region » and E is the unknown
electric field in the aperture of the original problem. In
region b, the field is produced by the equivalent magnetic
current sheet — M over the short-circuited aperture region.
The fact that the equivalent magnetic current sheet in
region a is + M and that in region b is — M ensures that
the tangential component of E is continuous across the
aperture in the original problem. The remaining boundary
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Fig. 1. A typical problem consisting of two regions bounded by conduc-

tors and coupled by an aperture.

region b

Fig. 2. The original problem decoupled into two equivalent problems by
short circuiting the aperture and placing the magnetic current sheets
+ M and — M over the aperture region.

condition to be satisfied is the tangential component of H,
which must be continuous across the aperture in the origi-
nal problem.
The tangential component of the magnetic field in region
a over the aperture region, denoted Hp, is the sum of that
due to impressed sources, denoted H/, plus that due to the
equivalent current M, denoted H(M), or
Hta = Htl + Hta(M)' (2)
Both H/ and H*(M) are computed in the environment of
region a with the aperture short circuited. A similar equa-
tion holds for region b except that the equivalent current
— M is the only source. Hence, the tangential component
of the magnetic field in region b over the aperture region,
denoted H?, is

th=th(_M)=_sz(M)- (3)
Here, H?(M) is computed in the environment of region b
with the aperture short circuited. The last equality in (3) is
a consequence of the linearity of the operator H?. The true
solution is obtained when H? of (2) equals H of (3). The
equality can be rearranged to

—Hta(M)—sz(M)=Htl- (4)

This is the basic operator equation for determining the
equivalent magnetic current M over the aperture region,
or, by (1), the tangential component of E over the aperture
in the original problem.
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Note that — H?(-) and — H?’(-) of (4) have the dimen-
sions of admittance. We define an admittance operator ¥*
by

Ya(') = _Hta(')
and an admittance operator ¥® by

Y*(-)=-H/(:). (6)
Hence, Y is the linear operator which when applied to the
current sheet M gives the tangential component of — H
over the aperture region due to M radiating in the environ-
ment of region a with the aperture short circuited. An

analogous interpretation applies to the linear operator Y.
The total admittance operator is defined by

Y(-)=Y(-)+Y*("). (7)
Now in admittance operator notation, (4) can be written as
Y(M)=H,. (8)

This is the basic equation for the aperture problem.

If impressed sources exist in both regions, say J'¢, M*¢
in region ¢ and J®, M'® in region b, we interpret H, to
be

(5)

Htt —_ Htm - thb' (9)
Here, H/* is the tangential component of H over the
aperture region due to J'?, M'¢ radiating in the environ-
ment of region a with the aperture short circuited, and
H/® is the tangential component of H over the aperture
region due to J'*, M'* radiating in the environment of
region b with the aperture short circuited. However, we .
emphasize that for the purposes of this paper it is assumed
that sources exist only in region a.

I1I.

We define the symmetric product of two vector func-
tions 4 and B over the aperture region as

(4,B)=[[ 4-Bas.

apert

PROPERTIES OF THE ADMITTANCE OPERATOR

(10)

The product (A4*, B), where the asterisk denotes complex
conjugate, defines an inner product for the complex Hil-
bert space of all square integrable functions over the
aperture region. The operator Y“ is symmetric, i.e.,

(Y*(M,), M;y=(M,,Y*(M,)). (11)

This is a statement of reciprocity, proved in [8, sec. 3-8],
since in expanded form it is

- ‘/;perthta(M).M di=~] meHz"(M,)-M, ds. (12)

Similarly, the operator ¥? is symmetric, i.e.,

(Y*(M,), M) =(M,,Y"(M,)) (13)

which is a statement of reciprocity for region b. Therefore,
the total admittance operator, ¥ =Y°+ Y?, is symmetric,
ie.,

(Y(M), M}y = (M, Y(M,)). (14)
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However, Y is not self-adjoint with respect to the inner
product, i.e.,

(Y*(M*), M)+ (M*, Y(M,)) (15)

since ¥ and Y? are not individually self-adjoint. Relation-
ship (14) is a statement of reciprocity, while (15) involves
mutual power.

Because Y is symmetric, it follows that the Hermitian
adjoint of ¥ (usually denoted by ¥*) is equal to the
conjugate of Y (which we denote by ¥Y*). Hence, the
Hermitian parts of Y are real, and given by

G=%(Y+Y*) (16)

(17)

G is called the conductance operator and B is called the
susceptance operator. In terms of its Hermitian parts

Y=G+ jB (18)

which is evident on substitution from (16) and (17). Both G
and B are symmetric operators, i.e., (13) is valid for ¥
replaced by G or B, since they are linear combinations of
Y and Y* which are symmetric. Equations (16)—(18) also
apply to Y“ and Y2

Finally, G is a positive definite operator, since for any
sheet of magnetic current M we have

L y_yp+
B—zj(Y Y*).

(M*,G(M)} = <M*, Livs Y*)(M)>
— 3 (MEY(M)) + 3 (M, V(M)

= %(M*, Y(M))+ %(Y*(M*),M>

=Re(M*,Y(M))=P,. (19)

Here, P, is the sum of the time-average powers radiated by
M into regions a and b. For the specific case of Fig. 1,
region a is closed and no time-average power is radiated
into it. Hence, P, is that radiated into the open region b.
Any magnetic sheet of current external to a bounded
conducting surface must radiate some power, however
small. This is implied by the work of Saunders [9]. We can
think of this as a statement that there are no radiation-free
resonances external to a perfect conductor of bounded
extent.

IV. CHARACTERISTIC APERTURE CURRENTS

One method to solve an operator equation of the form
(8) is to obtain a modal solution in terms of eigenfunctions
of the operator. These eigenfunctions can be orthogonal
with respect to two operators if we introduce a weight
operator into the eigenfunction equation. This weight oper-
ator must be positive definite, a property possessed by G.
Hence, we consider the generalized eigenvalue equation

Y(M,)=G(M,) (20)

where y, are the eigenvalues and M, are the eigenfunc-
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tions. Let

(21)
and substitute this and (18) into (20). On cancellation of
the common G(M,) terms, we have

B(M,)=bG(M,). (22)

This is equivalent to (20) for determining the eigencurrents
M,, and the eigenvalues b, of (22) are related to the
eigenvalues y, of (20) by (21). Note that (22) is dually
related to [3, eq. (13)] used for scattering problems.

We have already shown that both B and G are real
symmetric operators. Hence, all eigenvalues b, are real and
all eigenfunctions M, can be chosen real. (More generally,
the M, can be equiphasal, i.c., a complex constant times a
real function, but we will choose them real.) Linearly
independent eigenfunctions must satisfy the usual orthogo-
nality relationships

(M,,,G(M,))=0
(M, B(M,))=0 (24)
(M,.Y(M,))=0 (25)
when m # n. Furthermore, since the M, are real, the
orthogonality relationships are also valid for Hermitian
inner products, i.e., when the M, is replaced by M* in

(23)—(25). It is convenient to normalize the eigencurrents
according to

Y =1+ jb,

(23)

(M,,G(M,))=1 (26)

i.e, all eigencurrents radiate unit time-average power.
Hence, our orthonormalized eigenfunctions obey

(M,,,G(M,))=(M>,G(M,))=6,,
(M,,, B(M,)) =M}, B(M,))=b3,, (28)
(M, Y(M,))=(M}.Y(M,))=58,, (29)

where 8, is the Kronecker delta (8,,=0, m#n, and
8,,=1 m=n).

The operators B and G are real and self-adjoint with
respect to the symmetric product (10). Hence, we expect
that the real set { M, } will be complete in the real Hilbert
space of all real square integrable functions M over the
aperture region. We also expect { M, } to be complete in
the complex Hilbert space of all complex square integrable
functions with inner product {A4* B), since a complex
function is simply an ordered pair of real functions. Hence,
the set of real functions { M, } provides us with a set of real
basis functions for expanding the complex equivalent mag-
netic current M., This set simultancously diagonalizes ma-
trix representations of G, B, and Y. We call M, the
characteristic currents, y, the characteristic admittances,
and b, the characteristic susceptances. All characteristic
conductances Re(y,) have been chosen to be unity.

(27)

V. MODAL SOLUTIONS

A modal solution for the equivalent magnetic current
over the aperture region can be obtained by using the
characteristic currents in Galerkin’s method, which is the
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same as using them for both expansion and testing func-
tions in the method of moments [10]. For this, we take M
to be a linear combination of the characteristic currents as

M=} V.M, (30)

where V, are coefficients to be determined. Substituting
into the original operator equation (8), we obtain

LVY(M,)= (31)
n

The linearity of tlie operator ¥ has been used in (31) to
take the ¥ and the V,’s outside the Y operation. Next, we
take the inner product of (31) with each characteristic
current M,, in turn, and obtain

Z VAM,, Y(Mn)> =(M,, Hti> (32)

where m=1,2, - - - . (Note that the inner product and sym-
metric product with respect to M, are the same, since the
M, are real.) The linearity of the inner product has been
used in (32) to take the ¥ and the ¥,’s outside of the inner
product. Finally, we use the orthogonality relationship (29)
to reduce (32) to

Viyn=(M,, H/) (33)

for n=1,2,--. We define the modal excitation coefficient
for the nth mode to be

= (M, H"y=[[ M,-H'd.

apert

(34)

The subscript ¢t on H' has been dropped because the dot
product with M, involves only the tangential component.
Substituting (34) and (33) into (30), we have
M=} lI,ﬁM,,
™,

n

(35)

where y, =1+ jb,. This is the modal solution to the aper-
ture problem. If the modal currents were not normalized
according to (26), the y, in the denominator of (35) would
be replaced by (M,, G(M,))+ j(M,, B(M,)).

Note that the modal solution is a special case of the
generalized network solution discussed in [S]. In terms of
arbitrary expansion and testing functions, the moment
solution is [5, eq. (14)]. It is evident that the modal soliition
diagonalizes the admittance matrix [¥¢ + Y*] according to

[Ye+Y*]=[diag(»,)] (36)
where the right-hahd side denotes a- diagonal matrix with
diagonal elements y,.

VL
We are considering the particular problem of Fig. 1,
where region a is closed and contains all impressed sources

J', M', and region b is open. The time-average power into
region b is then

POWER THROUGH THE APERTURE

P = Reff E X H*-nds

apert

= (M*,G"(M)). (37)
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Now, since region a is closed, (M*,G*%(M))=0 and
(M*,G*(M)) = (M*,G(M)). Substituting for M from
(30), and using the bilinearity of the symmetric product, we
have

P= LV L VAM,,G(M,)). (38)
The conjugate on M,, has been dropped since M,, is real.
Using the orthonormality relationship (27), we reduce the
above equation to

P=L (39)
n

If the M, were not normalized according to (26), each term

in the summation of (39) would be multiplied by

(M,,G(M,)). An alternative form for (39) is obtained by

substituting for ¥V, from (33). The result is

P= YL/ (40)
n

where I is the modal excitation coefficient (34). Equaﬁon

(40) shows explicitly how the transmitted power depends

on the characteristic admittances.

VIL

The electric field E¢ and the magnetic field H? pro-
duced by a characteristic magnetic current M, radiating in
the environment of region a with the aperture short cir-
cuited are called characteristic fields of region a. Similarly,
the electric field E? and magnetic field H? produced by a
characteristic current — M, radiating in the environment
of region b with the aperture short circuited are called
characteristic fields of region b. The total characteristic
fields are defined as

CHARACTERISTIC FIELDS

E,=E°’+E}

(41)

H =H°’+ H!. (42)

Since the operator that gives the field due to a magnetic
current is linear, modal solutions of the form (35) can also
be written for the fields. These are

E=Y, lInE,, (43)
~

H-Y 1rH, (44)
n Y

They remain valid when superscripts @ or b are added to
the E’s arid H ’s.

For the particular case shown in Fig. 1 (i.e., for region a
closed, region b open, and all media loss free), all radiated
power must pass through the sphere or portion thereof at
infinity in region b, denoted S2. As stated by (27), the real
power radiated by each characteristic current is unity. By
reasoning dual to that of [3, sec. III], the characteristic
fields are Hermitian orthogonal over S?. Therefore

1 * —
. fs zEm-En ds=38,, (45)
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and
n[ H¥H,ds=38,, (46)
o Sol;
Hence, the characteristic electric fields E, are orthogonal
with respect to the unweighted Hermitian inner product
[A,B]=fL£A*-Bds. (47)
Since the {M,,} is complete, the { E,} is also complete in
the complex Hilbert space of all radiation fields E pro-
ducible by currents M over the aperture region, and forms
a basis for that space. Similarly, the set of characteristic
magnetic fields { H,} is orthogonal with respect to (47), is
complete, and forms a basis for the complex Hilbert space
of all radiation fields H producible by currents M on the
aperture region.

Interpretations of the modal fields in terms of complex
power and stored energy can be made in a manner dual to
that done for conducting bodies in [3]. In the interest of
brevity, we will not derive such formulas here.

VIIL

Any scalar p linearly related to the magnetic current, i.e.,
a linear function of M, will be called a linear measurement
of M. Examples of linear measurements are a) the voltage
at some set of terminals, b) the current on some wire, ¢) a
component of electric field at some point in space, and d) a
component of magnetic field at some point in space. Every
linear functional of M can be written as

p=(H",M) (48)

where H™ is a given vector function. p will be a continu-
ous functional of M if H™ is an ordinary function. If it is
desired to include discontinuous functionals of M in the
theory, we can let H™ be a symbolic or generalized
function.

The determination of H™ has to be a part of the
formulation of the problem. For example, if we desire p to
be the ith component of the magnetic field H? from M at
some point r, we would choose H™ to be the magnetic
field from a magnetic “test dipole” of unit magnetic mo-
ment and i-directed at r, calculated in the environment of
region b with the aperture short circuited. If we desire p to
be the ith component of electric field E? from M at some
point r, we would choose H” to be the magnetic field
from a unit electric dipole in the negative i direction at r,
and so on.

We now substitute for M from (35) into (48) and obtain

L1
-1,

LINEAR MEASUREMENTS

(49)

where I is the modal measurement coefficient

Im=(H"™ Mn>=/f H™ M, ds. (50)

apert

Note that 1 is of the same functional form as the modal
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excitation coefficient (34). Hence, any linear measurement
is a symmetric bilinear functional of H' (the impressed
field in the original problem) and H " (the impressed field
in the measurement problem). This symmetry is, of course,
a consequence of the fact that ¥ is a symmetric operator.

IX. DiscussioNn

The eigenvalues of the original operator equation (20)
are y, =1+ jb, where b, are real. These are equal to the
modal admittances when the characteristic currents are
normalized according to (26). The modal conductances are
then unity and the modal susceptances are either positive
(capacitive) or negative (inductive). The most important
terms in the modal solution (35) are those for which |y,|
are smallest, i.e., |b,| are smallest. We, therefore, order the
modes n=1,2,3,---, according to |b,| < |by| < |bs]< -+
The Hilbert space of equivalent currents M over the aper-
ture region uses a “power norm”

18]l = \/ [ mr-G(m)yas.

(51)

Two currents M; and M, whose difference M, — M, has
zero norm are equal because any nontrivial current must
radiate some power. The Hilbert space of radiation fields E
over the sphere at infinity S° uses the unweighted Hermi-

tian norm
/1
£ — *,
[1E] nffS;E Eds .

This is also a power norm, but no weight operator is
required.

For electrically small apertures, only a few modes (nor-
mally three or less) are required for accurate solutions. The
theory applies to apertures of arbitrary size and shape in
conductors of arbitrary size and shape. However, because
of the large number of modes which would be needed to
compute the equivalent aperture current for large aper-
tures, the theory is primarily useful for apertures of small
or intermediate size compared to the wavelength.

The characteristic mode theory gives aperture admit-
tances which include both susceptance and conductance
terms. This is in contrast to the usual Bethe-hole theory
which describes a small aperture in terms of polarizabilities
only. As shown in [11], the polarizabilities determine only
the susceptance terms of aperture admittance. A suscep-
tance due to one region can cancel that due to the other
region, in which case the Bethe-hole theory predicts infinite
power through a small aperture in the loss-free case. It is
the conductance term which limits the power, as discussed
in [11].

The characteristic mode theory for plane conductors and
small apertures reduces to an “angmented” Bethe-hole
theory, i.e., to an aperture admittance which includes both
susceptance terms and conductance terms. It also shows
how the Bethe-hole theory must be modified as the aper-
ture becomes larger and is in conducting surfaces which are
curved. It applies to both near fields and far fields if the

(52)
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excrtatron and measurement vectors are accurately
evaluated.

The theory uses a set of real basis functions for all cases.
This is in contrast to a modal theory in terms of an
unweighted eigenvalue equation, which would require a set
of complex basis functions. Not only are real eigenfunc-
tions easier to calculate, but so are the power through the
aperture (40) and the radiation field (43). These series
.converge rapidly when the power norm (51) is used, but
slowly when an unweighted norm is used.
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