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Characteristic Modes for Aperture Problems
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Abstract —A theory of characteristic modes is developed for problems

consisting of two regions coupled by an aperture. The modes are derived

from a weighted eigenvahse equation whose eigenfunetions define a set of

real expansion functions for the equivalent magnetic current over the

aperture region and whose eigenvalues are the modaf aperture admittances.

A modaf solution is obtained for an aperture of arbitrary size and shape

coupling two regions of arbitrary size and shape. The theory provides a

rigorous basis for the augmentation of the Bethe-hole theory by radiation

conductance terms, for its extension to apertures of larger electrical size,

and for its extension to apertures in nonplanar conducting surfaces.

I. INTRODUCTION

T HE THEORY OF characteristic modes has proved

very useful in the analysis of electromagnetic scatter-

ing problems [1]–[4]. These modes are basically solutions

to a weighted eigenvalue equation involving the impedance

operator Z, which relates the surface current on a conduc-

tor to the tangential component of the incident electric

field on the conductor. The modal currents are real (or

equiphasal), orthogonal over the conducting surface with

weight operator Re Z, and the modal radiation fields are

Hermitian orthogonal over the radiation sphere. When

used in a modal solution, they give a radiation field which

converges in a least-squares sense on the radiation sphere.

A similar theory of characteristic modes can be devel-

oped for the equivalent magnetic current in an aperture

problem. As shown in [5], the problem of coupling from

one region to another region through an aperture can be

formulated in terms of two generalized aperture admit-

tance operators, one for each region. These aperture admit-

tance operators are complex and symmetric, just as was the

impedance operator in a scattering problem. Hence, char-

acteristic modes can be defined for aperture problems in a

manner dual to those defined for scattering problems.

These modes have the same desirable properties as the

modes in a scattering problem, as follows: a) The char-

acteristic magnetic currents are real (or equiphasal).

b) They are weighted orthogonal over the aperture region.

c) Their radiation fields (characteristic fields) are Hermi-
tian orthogonal over the radiation sphere. d) Modal solu-

tions for the radiation field converge in a least-squares

sense on the radiation sphere.

Aperture problems have been considered by many previ-

ous investigators. For an extensive bibliography, see [6].

Manuscript received September 11, 1984; revised January 10, 1985.
This work was supported in part by the Office of Navaf Research under
Contracts NOO014-76-C-0225 and NOO014-85-K-O082.

The authors are with the Department of Electncaf and Computer
Engineering, Syracuse University, Syracuse, NY 13210.

Small apertures in an infinite conducting plane are usually

treated by the Bethe-hole theory [7]. If the small aperture is

in a nonplanar surface, the Bethe-hole theory is usually

used as an approximation. When the aperture is larger in

terms of wavelengths, solution of the appropriate integral

equation is usually attempted. The modal solution devel-

oped in this paper provides a general approach to the

problem, valid for apertures of arbitrary size and shape in

conductors of arbitrary size and shape. It reduces to the

Bethe-hole theory for small apertures in a conducting

plane, and shows how the Bethe-hole theory should be

modified for larger apertures and nonplanar surfaces.

II. FORMULATION OF THE PROBLEM

The problem to be considered is the same as that dis-

cussed in [5] and illustrated by Fig. 1. It consists of two

regions bounded by perfect electric conductors (called con-

ductors for short) and coupled by an aperture. One region,

called region a, is considered to be closed, i.e., of bounded

extent, and contains impressed sources J’, ikf’. The other

region, called region b, is considered to be open, i.e., of

unbounded extent opened at infinity. The medium in each

region is assumed to be loss free, so that the only power

loss is due to radiation. We shall develop the theory for the

particular case shown in Fig. 1, i.e., region a is closed and

region b is open. Slight changes in the interpretation of the

theory are required if both regions are open, or if both

regions are closed, or if impressed sources exist in both

regions.

The equivalence principle [8, sec. 3–5] is used to divide

the original problem into two decoupled parts, as shown in

Fig. 2. This is accomplished by closing the aperture with a

perfect electric conductor (short circuiting the aperture)

and placing sheets of magnetic current over the aperture

region on both sides of the conductor. In region a, the field

is produced by the original sources J’, M’ plus the equiv-

alent magnetic current sheet

iW=nx E (1)

over the short-circuited aperture region. In (l), n is the

unit normal pointing into region b and E is the unknown

electric field in the aperture of the original problem. In

region b, the field is produced by the equivalent magnetic

current sheet – Al over the short-circuited aperture region.

The fact that the equivalent magnetic current sheet in

region a is + M and that in region b is – M ensures that

the tangential component of E is continuous across the

aperture in the original problem. The remaining boundary
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conduettxe

Fig. 1. A typical problem consisting of two regions bounded by conduc-
tors and coupled by an aperture.

eonduews

region b

Fig. 2. The originaf problem decoupled into two equivalent problems by

short circuiting the aperture and placing the magnetic current sheets

+ M and – M over the aperture region.

condition to be satisfied is the tangential component of H,

which must be continuous across the aperture in the origi-

nal problem.

The tangential component of the magnetic field in region

a over the aperture region, denoted H;, is the sum of that

due to impressed sources, denoted H;, plus that due to the

equivalent current &f, denoted H;(M), or

H;=H~+H;(~). (2)

Both H: and H;(M) are computed in the environment of

region a with the aperture short circuited. A similar equa-

tion holds for region b except that the equivalent current

– ikf is the only source. Hence, the tangential component

of the magnetic field in region b over the aperture region,

denoted H:, is

~:=~:(-~) = -MV~). (3)

Here, H!(M) is computed in the environment of region b

with the aperture short circuited. The last equality in (3) is

a consequence of the linearity of the operator H1b. The true

solution is obtained when H; of (2) equals Htb of (3). The

equality can be rearranged to

–H:(M)–H; (M)=HJ. (4)

This is the basic operator equation for determining the

equivalent magnetic current &f over the aperture region,

or, by (l), the tangential component of E over the aperture

in the orizinal ~roblem,

Note that – H;(. ) and – H,h( o) of (4) have the dimen-

sions of admittance. We define an admittance operator Y“

by

Y=(. )=– H;(.) (5)

and an admittance operator Y~ by

Yb(. )=– H$(. ). (6)

Hence, Y“ is the linear operator which when applied to the

current sheet J1 gives the tangential component of – H

over the aperture region due to M radiating in the environ-

ment of region a with the aperture short circuited. An

analogous iinterpretation applies to the linear operator Y b.

The total admittance operator is defined by

Y(. )= Y”(. )+ Yb(. ). (7)

Now in admittance operator notation, (4) can be written as

Y(M) =H;.. (8)

This is the basic equation for the aperture problem.

If impressed sources exist in both regions, say J’”, M’a

in region a and Jib, A4ib in region b, we interpret H: to

be

H;= H;a – H;be (9)

Here, H~a is the tangential component of H over the

‘a Al’” radiating in the environ-aperture region due to J ,

ment of region a with the aperture short circuited, and

H/b is the tangential component of H over the aperture

region due to J’b, Alib radiating in the environment of

region b with the aperture short circuited. However, we

emphasize that for the purposes of this paper it is assumed

that sources exist only in region a.

III. PROPERTIES OF THE ADMITTANCE OPERATOR

We define the symmetric product of two vector func-

tions A and 13 over the aperture region as

(A, B)=JJ A.1.lds. (lo)
apert

The product (A*, B), where the asterisk denotes complex

conjugate, defines an inner product for the complex Hil-

bert space of all square integrable functions over the

aperture region. The operator Y“ is symmetric, i.e.,

(ya(Mi)>Mj) = (“i> ‘“(M])). (11)

This is a statement of reciprocity, proved in [8, sec. 3-8],

since in expanded form it is

-J~per:~:(M1)wd.= -J~per~;(w)~z~~. (12)

Similarly, the operator Yb is symmetric, i.e.,

(Y’(Mi), Mj) = (Mi, Y’(Mj)) (13)

which is a statement of reciprocity y for region b. Therefore,

the total admittance operator, Y = Y“ + Yb, is symmetric,

i.e.,

(Y(Mi), Mi) = (Mi, Y(M,)). (14)
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However, Y is not self-adjoint with respect to the inner

product, i.e.,

(Y*(fkf,*), M~) # (M,*, ‘(”j)) (15)

since Y“ and Y~ are not individually self-adjoint. Relation-

ship (14) is a statement of reciprocity, while (15) involves

mutual power.

Because Y is symmetric, it follows that the Hermitian

adjoint of Y (usually denoted by Y*) is equal to the

conjugate of Y (which we denote by Y*). Hence, the

Hermitian parts of Y are real, and given by

G=~(Y+Y*) (16)

B=*(Y– Y*). (17)

G is called the conductance operator and B is called the

susceptance operator. In terms of its Hermitian parts

Y= G+jB (18)

which is evident on substitution from (16) and (17). Both G

and B are symmetric operators, i.e., (13) is valid for Y

replaced by G or B, since they are linear combinations of

Y and Y* which are symmetric. Equations (16)–(18) also

apply to Y“ and Y~.

Finally, G is a positive definite operator, since for any

sheet of magnetic current ~ we have

(
(&f*, G(iW)) = iW*,;(Y+Y*)(M)

)

= +(M*,Y(M))+ +(M*,Y*(M))

1 M*, Y(M))+ +(Y*(M*))M)=y(

=Re(kf*, Y(ill)) = P,. (19)

Here, P, is the sum of the time-average powers radiated by

ikf into regions a and b. For the specific case of Fig. 1,

region a is closed and no time-average power is radiated

into it. Hence, P, is that radiated into the open region b.

Any magnetic sheet of current external to a bounded

conducting surface must radiate some power, however

small. This is implied by the work of Saunders [9]. We can

think of this as a statement that there are no radiation-free

resonances external to a perfect conductor of bounded

extent.

IV. CHARACTERISTIC APERTURE CURRENTS

One method to solve an operator equation of the form

(8) is to obtain a modal solution in terms of eigenfunctions

of the operator. These eigenfunctions can be orthogonal

with respect to two operators if we introduce a weight

operator into the eigenfunction equation. This weight oper-

ator must be positive definite, a property possessed by G.

Hence, we consider the generalized eigenvalue equation

Y(~.)=YnG(~n) (20)

where y. are the eigenvalues and ikf. are the eigenfunc-

tions. Let

y~=l+jb. (21)

and substitute this and (18) into (20). On cancellation of

the common G(ill. ) terms, we have

B(M.)=b.G(Mm). (22)

This is equivalent to (20) for determining the eigencurrents

M., and the eigenvalues b. of (22) are related to the

eigenvalues y. of (20) by (21). Note that (22) is dually

related to [3, eq. (13)] used for scattering problems.

We have already shown that both B and G are real

symmetric operators. Hence, all eigenvalues b. are real and

all eigenfunctions Afm can be chosen real. (More generally,

the M. can be equiphasal, i.e., a complex constant times a

real function, but we will choose them real.) Linearly

independent eigenfunctions must satisfy the usual orthogo-

nality relationships

(MM, G(M~))=O (23)

(M~, B(M~)) = O (24)

(M., Y(M.)) = O (25)

when m # n. Furthermore, since the Mm are real, the

orthogonalit y relationships are also valid for Hermitian

inner products, i.e., when the Mm is replaced by M; in

(23)-(25). It is convenient to normalize the eigencurrents

according to

(M.,G(Mn))=l (26)

i.e., all eigencurrents radiate unit time-average power.

Hence, our orthonormalized eigenfunctions obey

(M~, G(M.)) = (M;, G(M.)) = b~~ (27)

(M~, B(M.)) = (M;, B(M.)) = b.~n,. (28)

(M., Y(Mm)) = (M;, Y(MM)) = ynam~ (29)

where 6~. is the Kronecker delta (il~. = O, m # n, and

~m. =1, m =n).

The operators B and G are real and self-adjoint with

respect to the symmetric product (10). Hence, we expect

that the real set { ikf. } will be complete in the real Hilbert

space of all real square integrable functions M over the

aperture region. We also expect {M, } to be complete in

the complex Hilbert space of all complex square integrable

functions with inner product (A*, B), since a complex

function is simply an ordered pair of real functions. Hence,

the set of real functions {M. } provides us with a set of real

basis functions for expanding the complex equivalent mag-

netic current M. This set simultaneously diagonalizes ma-

trix representations of G, B, and Y. We call Mti the

characteristic currents, y. the characteristic admittances,

and b. the characteristic susceptances. All characteristic

conductance Re ( y. ) have been chosen to be unity.

V. MODAL SOLUTIONS

A modal solution for the equivalent magnetic current

over the aperture region can be obtained by using the

characteristic currents in Galerkin’s method, which is the
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same as using them for both expansion and testing func-

tions in the method of moments [10]. For this, we take M

to be a linear combination of the characteristic currents as

M= ~ V#n (30)
n

where V. are coefficients to be determined. Substituting

into the original operator equation (8), we obtain

~ ~Y(Mn) = H:. (31)
n

The linearity of the operator Y has been used in (31) to

take the X and the V.’s outside the Y operation. Next, we

take the inner product of (31) with each characteristic

current ik2M in turn, and obtain

~vn(ivfm, Y(iWn)) = (Mm, H:) (32)
w

where m=l,2, . . . . (Note that the inner product and sym-

metric product with respect to &2~ are the same, since the

Mm are real.) The linearity of the inner product has been

used in (32) to take the Z and the V~’s outside of the inner

product. Finally, we use the orthogonality relationship (29)

to reduce (32) to

Vnyn = (~., H)) (33)

forn=l,2, . . . . We define the modal excitation coefficient

for the nth mode to be

1:= (Ma,~i) =~~ Mri”H’ds. (34)
apert

The subscript t on Ifi has been dropped because the dot

product wi;h iW~ involves only the t~ngential

Substituting (34) and (33) into (30), we have

where y. = 1 + jb.. This is the modal solution

component.

(35)

to the aper-

ture problem. If the modal currents were not normalized

according to (26), the y. in the denominator of (35) would

be replaced by (~., G(ill.)) + j(ikf., B(ill.)).

Note that the modal solution is a special case of the

generalized network solution discussed in [5]., In terms of

arbitrary expansion and testing functions, the moment

solution is [5, eq. (14)]. It is evident that the modal soltition

diagonalizes the admittance matrix [Y=+ Yb] according to

[Y”+ Y’] = [diag(y.)] (36)

where the right-hand side denotes a diagonal matrix with

diagonal elemen~s y..

VI. POWER THROUGH THE APERTUkE

We are considering the particular problem of Fig. 1,

where region a is closed and contains all impressed sources

Ji, M’, and region b is open. The time-average power into

region b is then

P,= Re
J/

EXH*. nds
apert

=(&l*, G’(iW)). (37)

Now, since region a is closed, (iW*, G=(M))= O and

(kl”, G~(AZ)) = (A4*, G(M)). Substituting for 11 from

(30), and using the bilinearity of the symmetric product, we

have

P,=xv:x v.(iw.>G(AIn)). (38)
mn

The conjugate on iW~ has been dropped since kf~ is real.

Using the orthonormality relationship (27), we reduce the

above equation to

P,=~lvn12. (39)
n

If the ikf~ were not normalized according to (26), each term

in the summation of (39) would be multiplied by

(M., G(~.)). An alternative form for (39) is obtained by

substituting for V. from (33). The result is

~,=zll/Yn12 (40)
n

where l; is the modal excitation coefficient (34). Equation

(40) shows explicitly how the transmitted power depends

on the characteristic admittances.

VII. CHARACTERISTIC FIELDS

The electric field E; and the magnetic field H; pro-

duced by a characteristic magnetic current M. radiating in

the environment of region a with the aperture short cir-

cuited are called characteristic fields of region a. Similarly,

the electric field E; and magnetic field H; produced by a

characteristic current – IW. radiating in the environment

of region b tith the aperture short circuited are called

characteristic fields of region b. The total characteristic

fields are clefined as

E~=E~+E; (41)

H~=H; +H;. (42)

Since the operator that gives the field due to a magnetic

current is linear, modal solutions of the form (35) can also

be written for the fields. These are

E= ~ ~I;E~ (43)
~ Y.

H=; ~I;Hn. (44)

They remain valid when superscripts a or b are added to

the E’s and H ‘s.

For the particular case shown in Fig. 1 (i.e., for region a

closed, region b open, and all media loss free), all radiated

power must pass through the sphere or portion thereof at

infinity in region b, denoted S:. As stated by (27), the real

power radiated by each characteristic current is unity. By

reasoning dual to that of [3, sec. III], the characteristic

fields are IHermitian orthogonal over S:. Therefore

1

/
E~.E~ds = 8~~ (45)

i s:
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and

[
q.~,H;.H.ds = d~.. (46)

.

Hence, the characteristic electric fields E. are orthogonal

with respect to the unweighed Hermitian inner product

(47)

Since the { A2. } is complete, the {E. } is also complete in

the complex Hilbert space of all radiation fields E pro-

ducible by currents 114over the aperture region, and forms

a basis for that space. Similarly, the set of characteristic

magnetic fields {H. ) is orthogonal with respect to (47), is

complete, and forms a basis for the complex Hilbert space

of all radiation fields H producible by currents l-f on the

aperture region.

Interpretations of the modal fields in terms of complex

power and stored energy can be made in a manner dual to

that done for conducting bodies in [3]. In the interest of

brevity, we will not dlerive such formulas here.

VIII. LINEAR MEASUREMENTS

Any scalar p linearly related to the magnetic current, i.e.,

a linear function of M, will be called a linear measurement

of 11. Examples of linear measurements are a) the voltage

at some set of terminals, b) the current on some wire, c) a

component of electric field at some point in space, and d) a

component of magnetic field at some point in space. Every

linear functional of M can be written as

p=(H”, M) (48)

where H m is a given vector function. p will be a continu-

ous functional of 11 if If m is an ordinary function. If it is

desired to include discontinuous functional of M in the

theory, we can let H m be a symbolic or generalized

function.

The determination of H m has to be a part of the

formulation of the problem. For example, if we desire p to

be the i th component of the magnetic field H b from iW at

some point r, we would choose H m to be the magnetic

field from a magnetic “test dipole” of unit magnetic mo-

ment and &directed at r, calculated in the environment of

region b with the aperture short circuited. If we desire p to

be the ith component of electric field Eb from 34 at some

point r, we would choose Hm to be the magnetic field

from a unit electric dipole in the negative i direction at r,

and so on.

We now substitute for M from (35) into (48) and obtain

(49)

where Immis the modai! measurement coefficient

I:= (Hm, ill.)= (j Hm. Mnds. (50)
apert

Note that 1: is of the same functional form as the modal

excitation coefficient (34). Hence, any linear measurement

is a symmetric bilinear functional of H‘ (the impressed

field in the original problem) and H ‘“ (the impressed field

in the measurement problem). This symmetry is, of course,

a consequence of the fact that Y is a symmetric operator.

IX. DISCUSSION

The eigenvalues of the original operator equation (20)

are y. = 1 + jb. where b. are real. These are equal to the

modal admittances when the characteristic currents are

normalized according to (26). The modal conductance are

then unity and the modal susceptances are either positive

(capacitive) or negative (inductive). The most important

terms in the modal solution (35) are those for which IYml

are smallest, i.e., Ib. I are smallest. We, therefore, order the

modes n=l,2,3,. ... according to Ibll < Ibzl < lb~l < * o“ .

The Hilbert space of equivalent currents M over the aper-

ture region uses a “power norm”

r ’51)
ll&fll = j~ M*G(M) ds

Two currents Ml and Mz whose difference Ml – iW2 has

zero norm are equal because any nontrivial current must

radiate some power. The Hilbert space of radiation fields E

over the sphere at infinity S: uses the unweighed Hermi-

tian norm

/!/IIEII = ; ~,E*.Eds .
m

(52)

This is also a power norm, but no weight operator is

required.

For electrically small apertures, only a few modes (nor-

mally three or less) are required for accurate solutions. The

theory applies to apertures of arbitrary size and shape in

conductors of arbitrary size and shape. However, because

of the large number of modes which would be needed to

compute the equivalent aperture current for large aper-

tures, the theory is primarily useful for apertures of small

or intermediate size compared to the wavelength.

The characteristic mode theory gives aperture admit-

tances which include both susceptance and conductance

terms. This is in contrast to the usual Bethe-hole theory

which describes a small aperture in terms of polarizabilities

only. As shown in [11], the polarizabilities determine only

the susceptance terms of aperture admittance. A suscep-

tance due to one region can cancel that due to the other

region, in which case the Bethe-hole theory predicts infinite

power through a small aperture in the loss-free case. It is

the conductance term which limits the power, as discussed

in [11].

The characteristic mode theory for plane conductors and

small apertures reduces to an “augmented” Bethe-hole

theory, i.e., to an aperture admittance which includes both

susceptance terms and conductance terms. It also shows

how the Bethe-hole theory must be modified as the aper-

ture becomes larger and is in conducting surfaces which are

curved. It applies to both near fields and far fields if the
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excitation and measurement vectors are accurately

evaluated.

The theory uses i set of real basis functions for all cases.

This is in contrast to a modal theory in terms of an

unweighed eigenvalue equation, which would require a set

of complex basis functions. Not only are real eigenfunc-

tions easier to calculate, but so are the power through the

aperture (40) and the radiation field (43). These series

converge rapidly when the power norm (51) is used, but

slowly when an unweighed norm is used.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

R. J. Garbacz, “ Modaf expansions for resonance scattering phe-
nomena: Proc. IEEE, vol. 53, pp. 856-864, Aug. 1965.
R. J. Garbaez and R. H. Turpin, “A generalized expansion for
radiated and scattered fields,” IEEE Trans. Antennas Propagat.,
vol. AP-19, pp. 348–358, May 1971.
R. F. Barrington and J. R. Mautz, “Theory of characteristictriodes
for conducting bodies: IEEE Trans. Antennas Propagat., vol.
AP-19, pp. 622-628, %@. 1971.
R. F. J&rirtgton and J. R. Mautz, “Computation of characteristic
modes for conducting bodies: IEEE Trans. Antennas Propagat.,

vol. AP-19, pp. 629–639, Sept. 1971.
R. F. Barrington..and J. R. Mautz, “A generalized network formu-
lation for aperture problems: IEEE Trans. Antennas Propagat.,

vol. AP-24, pp. 870–873, NOV. 1976.
C. M. Butler, Y. Rahmat-Sar@ and R. Mittra, “Electromagnetic
penetration through apertures in conducting snrfaces~’ IEEE Trans.
Electromagn. Compar., vol. EMC-20, pp. 82–93, Feb. 1978.
H. A. Bethe, “Theory of diffraction by small holes,” Pkys. Reu.,

vol. 66, pp. 163–182, Oct.1944.

R. F. Barrington, Time-Harmonic Electromagnetic Fields. New

York: McGraw-Hill, 1961.
W. K. Saunders, “On solutions of Maxwell’s equations in an
exterior region;’ Proc. 7Vatl. Acad. Sci., vol. 38, pp. 342-348, 1952.
R. F. Barrington, Field Computation by Moment Methods. New
York: Macmillan, 1968. Reprinted by Krieger Publishing Co.,
Melbourne, FL, 1981.
R. F. Barrington, “Resonant behavior of a small aperture backed
by a conducting body: IEEE Trans. Antennas Propagat., vol.

AP-30, pp. 205-212, Mar. 1982.

Roger F. Barrington (S’48-A’53-M57- SM62-

,J?’68) was born in Buffalo, NY, on December 24,
1925. He received the B.E.E. and M.E.E. degrees
from Syracuse University, Syracuse, NY, in 1948
and 1950, respectively, and the Ph.D. degree
from Ohio State University, Columbus, OH, in
1952.

From 1945 to 1946, he served as an Instructor ‘
at the U.S. Naval Radio Materiel School,
Dearborn, MI, and from 1948 to 1950, he was
employed as an Instructor and Research Assis-

tant at Syracuse University. While studying at Ohio State University, he
served as a Research Fellow in the Antenna Laboratory. Since 1952, he
has been on the faculty of Syracuse University, where he is presently
Professor of Electrical Engineering. During 1959–1960, he was Visiting
Associate Professor at the University of Illinois, Urbana. In 1964, he was
Visiting Professor at the University of California, Berkeley, and, in 1969,
he was Guest Professor at the Technical University of Denmark, Lyngby,
Denmark.

Dr. Barrington is a member of Tau Beta Pi, Sigma Xi, and the
American Association of University Professors.

Joseph R. Mautz (S’66-M67-SM75) was born
in Syracuse, NY, on April 29, 1939. He received
the B.S., M. S., and Ph.D. degrees in electrical
engineering from Syracuse University, Syracuse,
NY, in 1961, 1965, and 1969, respectively.

He is a Research Engineer in the Department
of Electrical Engineering, Syracuse University,
working on radiation and scattering problems.
His primary fields of interest are electromagnetic
theory and applied mathematics. He is currently
workirw in the area of numericaf methods for

solving field problems.


